Estrogen receptor β agonist enhances temozolomide sensitivity of glioma cells by inhibiting PI3K/AKT/mTOR pathway.
نویسندگان
چکیده
Glioma is the most common primary brain tumor among adults. Temozolomide (TMZ) is widely used as the first‑line postsurgical drug for malignant glioma. However, the therapeutic efficacy of TMZ remains ineffective as inherited or acquired drug resistance is frequently observed. Estrogen receptor β (ERβ) has emerged as a tumor suppressor and a key regulator of signal transduction in glioma cells. However, little is known about the role of ERβ in regulating the chemotherapeutic response to TMZ. In the current study, the TMZ‑resistant U138 glioma cells were treated with the novel ERβ agonist liquiritigenin (Liq). It was observed that Liq significantly enhanced ERβ expression and sensitized glioma cells to TMZ‑induced proliferation inhibition. As a potential mechanism, it was noted that Liq treatment significantly inhibited the activity of the PI3K/AKT/mTOR pathway, which played a protective role against the TMZ‑induced cytotoxicity. In addition, it was demonstrated that ERβ knockdown or activation of the phosphatidylinositol‑4,5‑bisphosphate 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway by insulin‑like growth factor 1 both eradicated the function of Liq. These results suggest that Liq treatment enhances glioma cell susceptibility to TMZ by inhibiting the PI3K/AKT/mTOR pathway. As hyperactivation of the PI3K/AKT/mTOR pathway is frequently observed in gliomas, the combined use of ERβ agonists may become a feasible therapy option to overcome chemoresistance to TMZ.
منابع مشابه
Anti-diabetic effect of loganin by inhibiting FOXO1 nuclear translocation via PI3K/Akt signaling pathway in INS-1 cell
Objective(s): JiangTangXiaoKe (JTXK) granule, a Chinese traditional herbal formula, has been clinically used and demonstrated to be beneficial in controlling high glucose and to relieve the symptoms of Type 2 diabetes mellitus patients for decades. In this study, we explored how loganin, one of the components in JTXK granule, mediated the anti-diabetic effect.Materials and Methods: We generate...
متن کاملCombination of Endothelial-Monocyte-Activating Polypeptide-II with Temozolomide Suppress Malignant Biological Behaviors of Human Glioblastoma Stem Cells via miR-590-3p/MACC1 Inhibiting PI3K/AKT/mTOR Signal Pathway
This study aims to investigate the effect of Endothelial-Monocyte-Activating Polypeptide-II (EMAP-II) combined with temozolomide (TMZ) upon glioblastoma stem cells (GSCs) and its possible molecular mechanisms. In this study, combination of EMAP-II with TMZ inhibited cell viability, migration and invasion in GSCs, and autophagy inhibitor 3-methyl adenine (3-MA) and chloroquine (CQ) partly revers...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملphosphoinositide 3-kinase (PI3K)/AKT pathway was involved in estrogen-induced metastasis in ovarian cancer cells. In the present study, the role and mechanism of estrogen-induced invasion was further explored using a stable short hairpin RNA
Previous studies by our group revealed that the phosphoinositide 3-kinase (PI3K)/AKT pathway was involved in estrogen-induced metastasis in ovarian cancer cells. In the present study, the role and mechanism of estrogen-induced invasion was further explored using a stable short hairpin RNA (shRNA) estrogen receptor α/β (ER α/β) SKOV3 cell line when ER α and ER β were knocked down by lentiviral i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular medicine reports
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2015